

NOTICE

The following document, the TAC_PLUS User's Guide, was written by Cisco
Systems, Inc. It is included on the RSA Authentication Manager
distribution medium as a convenience for RSA Authentication Manager
sites that use RSA SecurID to protect Cisco, TACACS+ devices.

Cisco Systems, Inc. owns this material and the copyright that protects it.

 TAC_PLUS User's Guide

Copyright (c) 1995 by Cisco systems, Inc. All rights reserved.

Please NOTE: None of the TACACS code available here comes with any
warranty or support.

Definitions and Terms

NAS --- A Network Access Server i.e. a Cisco box, or anything else
 which makes tacacs+ authentication and authorization requests,
 or sends accounting packets.

Daemon -- a program, usually running on a Unix host, which services
 network requests for authentication and authorization,
 verifies identities, grants or denies authorizations, and logs
 accounting records.

passwd(5) files -- files conforming to Unix password style format, as
 documented in section 5 of the Unix manuals.

AV pairs -- strings of text in the form attribute=value sent between a
 NAS and a tacacs+ daemon.

Since a NAS is often referred to as a server, and a daemon is also
often referred to as a server, the term "server" has been avoided here
in favor of the less ambiguous terms "NAS" and "Daemon".

BUILDING TAC_PLUS

Tac_plus is known to build and run on the following platforms:

AIXv3.2 (using bsdcc)
HP/UX A.09.01,
i86 Solaris 2.4 (SUNOS 5.4), using SUNpro SW2.0.1 & appropriate
Makefile switches
SUNOS 4.1.2 sparc-2
SUNOS 4.1.3
MIPS R3K SGI IRIX 4.05F (using gcc and -DSUNOS5_4)
BSDI BSD/386 1.1

To build tac_plus, edit the top of the Makefile to select the
appropriate defaults for your system. Then type

 make tac_plus

The default version can authenticate using its internal database,
s/key or passwd(5) style files. Authorization is done using the
internal database or via calls to external programs, which the
administrator configures.

To use S/KEY, you must obtain and build the s/key library (libskey.a)
yourself. You can then compile in S/KEY support per the
instructions for S/KEY in the Makefile. I got my S/KEY code from
crimelab.com [198.64.127.1] in directory: /pub/skey.

Should you need them, there are routines for accessing password files
(getpwnam,setpwent,endpwent,setpwfile) in pw.c.

CONFIGURING TAC_PLUS

Tac_plus is configured via a configuration file. You can create a
configuration file from scratch or, if you have passwd(5) and
supplementary files from earlier versions of tacacs, you can convert
these to configuration file format by running the supplied perl script
convert.pl.

CONVERTING EXISTING PASSWD(5) FILES

To convert an existing passwd(5) file e.g. one used with an older
version of tacacs, use the convert.pl perl script as follows:

convert.pl <passwd file> [-g] [<supplementary file>]

1). If you have no supplementary file, simply omit it.

2). If the groupid field of your passwd file does NOT represent a
valid acl number (e.g if it's really a unix passwd file this field is
a group id, not an acl number), just omit the -g flag.

The rest of this document assumes that are configuring tac_plus from
scratch.

CONFIGURING TAC_PLUS FROM SCRATCH

A configuration file consists of some top-level directives for setting
defaults and for setting up the encryption key, followed by a
declaration
for each user and group you want to configure. Within each user or
group declaration, there are declarations for authenticating and
authorizing operations for that user.

1). Configuring the encryption key

If you want tac_plus to encrypt its packets (and you almost certainly
DO want this, as there can be usernames and passwords contained in
these packets), then you must specify an encryption key in the
configuration file. The identical key must also be configured on any
NAS which communicates with tac_plus.

This is done using the statement

key = "your key here"

During debugging, it may be convenient to temporarily switch off
encryption by not specifying any key. Don't embarrass yourself by
forgetting to switch encryption back on again after you've finished
debugging.

The current code does not support host-specific keys (left as an
exercise to the reader).

On the NAS, you also need to configure the *same* key. Do this by
issuing:

 aaa new-model
 tacacs-server key <your key here>

COMMENTS IN CONFIGURATION FILES

Comments can appear anywhere in the configuration file, starting with
the # character and extending to the end of the current line. Should
you need to disable this special meaning of the # character, e.g. if
you have a password containing a # character, simply enclose the string
containing it within double quotes.

CONFIGURING USERS AND GROUPS

Each user may belong to a group (but only one group). Each group may
in turn belong to one other group and so on ad infinitum.

Users and groups are declared as follows. Here we declare two users
"fred" and "lily", and two groups, "admin" and "staff".

Fred is a member of group "admin", and group "admin" is in turn a
member of group "staff". Lily is not a member of any group.

user = lily {
 # user lily is not a member of any group
 # and has nothing else configured as yet
}

user = fred {
 # fred is a member of group admin
 member = admin
}

group = admin {
 # group admin is a member of group staff
 member = staff
}

group = staff {
 # group staff is not a member of any group
}

RECURSION AND GROUPS

In general, when the daemon looks up values e.g. passwords, it will
look first to see if the user has it defined e.g. if the user has her
own password. If not, it looks to see if she belongs to a group and if
so, whether the group has a password defined. If not, this process
continues through the hierarchy of groups (a group can be a member of
another group) until a value is found, or there are no more groups.

This recursive process occurs for lookups of expiration dates, for
arap and chap "secrets", and also for authorization parameters (see
later).

A typical configuration technique is thus to place users into groups
and specify as many groupwide characteristics in the group declaration
as possible. Then, individual user declarations can be used to
override the group settings for selected users as needed.

CONFIGURING USER AUTHENTICATION

There are 3 ways to authenticate a user.

1). You can include a DES a password for a user or for a group that
s/he is a member of, viz:

 user = joe {
 member = admin
 # this is lily's encrypted DES password. It overrides the admin
 # group's password
 password = XQkR21zMB0TDU
 }

 user = fred {
 # fred is a member of group admin. He inherits the group's
password
 # as he does not have his one of his own.
 member = admin
 }

 group = admin {
 # group admin has a password which all members share
 # unless they have their own password
 password = "}9DUz.B909K3Y"
 }

NOTE: The perl script generate_passwd.pl may be used to hand-generate
encrypted passwords, or they may be taken from a Unix passwd file.

2). Authentication using passwd(5) files.

For selected users, you can perform DES authentication using existing
passwd(5) files instead of entering the password into the
configuration file directly (though using passwd(5) files in
noticeably less efficient for large files).

You can specify this behavior per-user, by naming a passwd(5) file in
the password declaration (instead of giving a DES password), as
follows:

 user = fred {
 # look in file /etc/tac_plus_passwords to authenticate this user
 password = file /etc/tac_plus_passwords
 }

3). Authentication using s/key.

If you have successfully built and linked in a suitable s/key library
and compiled tac_plus to use s/key, you can then specify that a user
be authenticated via s/key, as follows:

 user = fred {
 password = skey
 }

RECURSIVE PASSWORD LOOKUPS

As stated eariler, authentication passwords are looked up recursively:
The daemon looks first to see if the user has her own password. If
not, it looks to see if she belongs to a group which has a
password. This process recurses through the hierarchy of groups (a
group can be a member of another group) until a password is found, or
there are no more groups.

CONFIGURING DEFAULT AUTHENTICATION

By default, an unrecognized user will be denied authentication (NOTE:
there is no way to authenticate someone with no username).

At the top level of the configuration file, you can set the default
authentication to use a passwd(5) file, viz:

 default authentication = file /etc/passwd

The effect of this statement is that if a user does not appear in the
configuration file, the daemon will attempt to authenticate the user
using passwords from this file i.e. /etc/passwd in this example.

If you have passwd(5) files from previous versions of tacacs daemons,
this facility allows you to authenticate using the passwd(5) from
older versions of tacacs, while you migrate to using the new
configuration file.

CONFIGURING AUTHENTICATION ON THE NAS

On the NAS, configure authentication at login on all lines (including
vty and console lines)

 aaa new-model
 aaa authentication login default tacacs+

NOTE: As soon as you issue this command, you will no longer be able to
create new logins to your NAS without a functioning tacacs+ daemon
appropriately configured with usernames and password, so make sure you
have this ready.

As a safety measure while setting up, I suggest you configure an
enable password and make it the last resort authentication method, so
if your tacacs+ daemon fails to respond you will be able to use the
enable password to login. To do this, configure:

 enable secret foo
 aaa authentication login default tacacs+ enable

CONFIGURING AUTHORIZATION

Authorization allows the daemon to deny commands and services
outright, or to modify commands and services on a per-user
basis. Authorization is divided into two separate parts: commands
and services.

AUTHORIZING COMMANDS
--

Exec commands are those commands which are typed at a Cisco exec
prompt. When authorization is requested by the NAS, the entire command
is sent to the tac_plus daemon for authorization.

Command authorization is configured by specifying a list of
egrep-style regular expressions to match command arguments (see the
supplied man page, regexp.3, for a full description of regular
expressions) and an action which is "deny" or "permit".

The following configuration example permits user Fred to run the
following commands:

 telnet 131.108.13.<any number> and
 telnet 128.<any number>.12.3 and
 show <anything>

All other commands are denied (by default).

user=fred {

 cmd = telnet {

 # permit specified telnets
 permit 131\.108\.13\.[0-9]+
 permit 128\.[0-9]+\.12\.3
 }
 cmd = show {
 # permit show commands
 permit .*
 }
}

NOTE: If an argument list you specify contains spaces or tabs, you
must enclose it in double quotes.

The command and arguments which the user types gets matched to the
regular expressions you specify in the configuration file (in order of
appearance). The first successful match performs the associated
action (permit or deny). If there is no match, the command is denied
by default.

Conversely, the following configuration example can be used to deny
the command:

 telnet 131.108.13.<any number>

and permit all other arguments, since the last line will match any
argument list. All other commands and services are permitted due to
the "default service = permit" clause.

Note: the default statement must be the first in the user clause

user=fred {
 default service = permit
 cmd = telnet {
 # allow all fred's telnet commands except to 131.108.13.*
 deny 131\.108\.13\.[0-9]+
 permit .*
 }
}

Note: Matches are not anchored, so "deny 131.108.13.[0-9]+" matches
anywhere in the command. To anchor the match, use ^ at the beginning
of the regular expression.

Note: When a command has multiple arguments, users may enter them in
many different permutations. It can be cumbersome to create regular
expressions which will reliably authorize commands under these
conditions, so administrators may wish to consider other methods of
performing authorization e.g. by configuring NAS-local privileged
enable levels on the NAS itself.

CONFIGURING DEFAULT AUTHORIZATION

There are 3 places where defaults for authorization may be
configured. Unless specified to the contrary, the default is always to
deny authorization.

1). To override the default denial of authorization for a non-existent
user, specify at the top level of the configuration file:

 default user = permit

2). At the user level i.e. inside the braces of a user declaration,
the default for a user who doesn't have a service or command
explicitly authorized is to deny that service or command. The
following directive will permit the service or command by default
instead:

 default service = permit

NOTE: This directive must appear first inside the user declaration.

3). At the service authorization level i.e. inside the braces of a
service declaration, arguments in an authorization request are
processed according to the algorithm described later. Some actions
when authorizing services (e.g. when matching attributes are not
found) depend on how the default is configured. The following
declaration changes the default from deny to permit for this user and
service.

 default attribute = permit

NOTE: This directive must appear before any others inside the service
declaration.

NOTE: for command authorization (as opposed to service authorization
being discussed here), you specify deny .* or permit .* as the last
line of the regular expression matches to create default behaviour.

AUTHORIZING EXEC STARTUP

If you authorize some exec commands, you implicitly agree to allow
that user to start an exec (it doesn't make sense to permit exec
commands if an exec can't be started to run those commands)

In addition to agreeing to allow an exec to start, you can supply some
parameters whenever an exec starts e.g. an autocmd, a dialback
string or a connection access list (acl).

In the example below, when an exec is started on the NAS, an acl of 4
will be returned to the NAS:

user=fred {

 # this following line permits an exec to start and permits
 # all commands and services by default

 default service = permit

 service = exec {
 # When an exec is started, its connection access list will be 4.
 # It also has an autocmd.
 acl = 4

 autocmd = "telnet foobar"
 }

 cmd = telnet {
 # allow all fred's telnet commands except telnet to 131.108.13.*
 deny 131\.108\.13\.[0-9]+
 permit .*
 }
}

AUTHORIZING EXEC, SLIP, PPP and ARAP SERVICES
--

Authorizing exec, slip. PPP and arap services is different to command
authorization.

When authorizing the above services, the NAS sends a request
containing a number of attribute-value (AV) pairs, each having the
form

 attribute=value

(Note: during debugging, you may see AV pairs whose separator
character is a "*" instead of a "=" sign. This is to signify whether a
value in a pair is mandatory or optional. An "=" sign indicates a
mandatory value. A "*" denotes an optional value).

e.g. a user starting ppp/ip using an address of 131.108.12.44 would
generate a request with the following AV pairs:

 addr=131.108.12.44
 inacl=5

CONFIGURING SERVICE AUTHORIZATION

A similar list of AV pairs is placed in the daemon's configuration
file in order to authenticate the service. The daemon compares each
NAS AV pair to its configured AV pairs and either allows or denies
the service. If the service is allowed, the daemon may add, change or
delete some AV pairs before returning them to the NAS, thereby
restricting what the user is permitted to do.

The complete algorithm by which the daemon processes its configured
AV pairs against the list the NAS sends, is given below.

The Authorization Algorithm

For each AV pair sent from the NAS:

 If the AV pair from the NAS is mandatory:

 a). look for an exact attribute,value match in the daemon's
 mandatory list. If found, add the AV pair to the output.

 b). If an exact match doesn't exist, look in the daemon's
 optional list for the first attribute match. If found, add the
 NAS AV pair to the output.

 c). If no attribute match exists, deny the command if the
 default is to deny, or,

 d). If the default is permit, add the NAS AV pair to the
 output.

 If the AV pair from the NAS is optional:

 e). look for an exact attribute,value match in the mandatory
 list. If found, add DAEMON's AV pair to output.

 f). If not found, look for the first attribute match in the
 mandatory list. If found, add DAEMONS's AV pair to output.

 g). If no mandatory match exists, look for an exact
 attribute,value pair match among the daemon's optional AV
 pairs. If found add the DAEMON's matching AV pair to the
 output.

 h). If no exact match exists, locate the first attribute match
 among the daemon's optional AV pairs. If found add the
 DAEMON's matching AV pair to the output.

 i). If no match is found, delete the AV pair if default is
 deny, or

 j). If the default is permit add the NAS AV pair to the output.

 k). After all AV pairs have been processed, for each mandatory
 DAEMON AV pair, if there is no attribute match already in the
 output list, add the AV pair (add only one AV pair for each
 mandatory attribute).

RECURSIVE AUTHORIZATION

Remember that authorization is also recursive over groups, in the same
way that password lookups are recursive. Thus, if you place a user in
a group, the daemon will look in the group for authorization
parameters if it cannot find them in the user declaration.

EXAMPLES

key = "your key here"

user=fred {
 password = mEX027bHtzTlQ
 name = "Fred Flintstone"
 member = administrators
 expires = "May 23 2005"
 arap = "Fred's arap secret"
 chap = "Fred's chap secret"

 service = exec {
 # When Fred starts an exec, his connection access list is 5
 acl = 5

 # We require this autocmd to be done at startup
 autocmd = "telnet foo"
 }

 # All commands except telnet 131.108.13.* are denied for Fred
 cmd = telnet {

 # Fred can run the following telnet command

 permit 131\.108\.13\.[0-9]+
 deny .*
 }

 service = ppp protocol = ipx {
 # Fred can run ipx over ppp only if he uses one
 # of the following mandatory addresses If he supplies no
 # address, the first one here will be mandated

 addr=131.108.12.11
 addr=131.108.12.12
 addr=131.108.12.13
 addr=131.108.12.14

 # Fred's mandatory input access list number is 101
 inacl=101

 # We will suggest an output access list of 102, but Fred may
 # choose to ignore or override it

 optional outacl=102
 }

 service = slip {

 # Fred can run slip. When he does, he will have to use
 # these mandatory access lists

 inacl=101
 outacl=102
 }

 # set a timeout in the lcp layer of ppp
 service = ppp protocol = lcp {
 timeout = 10
 }
}

user = wilma {

 # Wilma has no password of her own, but she's a group member so
 # she'll use the group password if there is one. Same for her
 # password expiry date

 group = admin
}

group = admin {

 # group members who don't have their own password will be looked
 # up in /etc/passwd

 password file = /etc/passwd

 # group members who have no expiry date set will use this one

 expires = "Jan 1 1997"
}

USING PROGRAMS TO DO AUTHORIZATION

There are some limitations to the authorization that can be done using
a configuration file. The main ones are that you're constrained by the
algorithm the daemon uses, and that the configuration is basically
static, so if you're trying to use it to allocate dynamic things (such
as addresses from a pool) that varies over time, you need another
mechanism.

The solution is to arrange for the daemon to call your own
user-supplied programs to control authorization. These "callouts"
permit almost complete control over authorization, allowing you to
read all the fields in the authorization packet sent by the NAS
including all its AV pairs, and to set authorization status and send a
new set of AV pairs to the NAS in response.

USING AV PAIRS FOR AUTHORIZATION

During authorization, the NAS sends an authorization request packet
containing various fields of interest and a set of AV pairs (see the
tacacs+ protocol specification for a list of fields and pairs).

Fields from the authorization packet can be supplied to the programs
you call on their command line, by using the appropriate dollar
variables in the configuration file (see below).

AV pairs from the authorization packet are fed to the program's
standard input, one per line. The program is expected to process the
AV pairs and write them to its standard output, one per line. What
happens then is determined by the exit status of the program.

NOTE: AV pairs are text strings with the format
attribute=value. Unlike the configuration file which allows spaces
when specifying AV pairs, there should be no spaces surrounding the
"=" sign when using the programmatic interface.

CALLING SCRIPTS BEFORE AUTHORIZATION

You can specify a per-user program to be called before any other
attempt to authorize is made by using a "before" clause e.g.

user = auth1 {
 before authorization "/usr/local/bin/pre_authorize $user $port
$address"
}

The AV pairs sent from the NAS will be supplied to this program's
standard input, one pair per line.

Fields from the initiating authorization packet which the NAS sends to
the daemon can also be passed to the program by using dollar variables
in the command line. A complete list of available variables is as
follows (consult the API specification for more details).

 user -- user name
 name -- Nas name
 port -- Nas port
 address -- Nac address (remote user location)
 priv -- privilege level (a digit, 0 to 15)
 method -- (a digit, 1 to 4)
 type -- (a digit, 1 to 4)
 service -- (a digit, 1 to 7)
 status -- (pass, fail, error, unknown)

Unrecognized variables will appear as the string "unknown".

If the program returns a status of 0, authorization is unconditionally
permitted. No further processing is done on this request and no AV
pairs are returned to the NAS.

If the program returns a status of 1, authorization is unconditionally
denied. No further processing is done on this request and no AV pairs
are returned to the NAS.

If the program returns a status of 2, authorization is permitted. The
program is expected to modify the AV pairs that it receives on its
standard input (or to create entirely new ones) and to write them, one
per line, to its standard output. The new AV pairs will be sent to the
NAS with a status of AUTHOR_STATUS_PASS_REPL. No further processing
takes place on this request.

Any other status value returned from the program will cause an error
to be returned to the NAS.

CALLING PROGRAMS AFTER AUTHORIZATION

You can specify a per-user program to be called after authorization
processing has been carried out by the daemon (but before the
authorization status and AV pairs have been transmitted to the NAS).

The program can optionally modify the AV pairs being sent back to the
NAS and change the authorization status if required.

group = auth1 {
 # call /usr/local/bin/post_authorize passing it the username, port
 # and current authorization status.
 after authorization "/usr/local/bin/post_authorize $user $port
$status"
}

The AV pairs resulting from the authorization algorithm that the
daemon proposes to return to the NAS, are supplied to the program on
standard input, one AV pair per line, so they can be modified if
required.

Fields from the incoming authorization packet which the NAS sent to
the daemon can also be passed to the program on its command line by
specifying dollar variables in the command line (see previous
section).

The program is expected to process the AV pairs and write them to its
standard output, one per line. What happens then is determined by the
exit status of the program:qq

If the program returns a status of 0, authorization continues as if
the program had never been called. Use this if e.g. you just want a
program to send mail when an authorization occurs, without otherwise
affecting normal authorization.

If the program returns a status of 1, authorization is unconditionally
denied. No AV pairs are returned to the NAS. No further authorization
processing occurs on this request.

If the program returns a status of 2, authorization is permitted and
any AV pairs returned from the program on its standard output are sent
to the NAS in place of any AV pairs that the daemon may have
constructed.

Any other value will cause an error to be returned the the NAS by the
daemon.

WARNINGS

Pre and post authorization programs are invoked by handing the command
line to the Bourne shell. On many Unix systems, if the shell doesn't
find the specified program it returns a status of one, which denies
authorization. However, at least one Unix system (BSDI) returns a
status code of 2 under these circumstances, which will permit
authorization, and probably isn't what you intended.

Note also that if the program you call hangs, the authorization will
time out and return an error on the NAS, and you'll tie up a process
slot on the daemon host, eventually running out of resources. There is
no special code to detect this in the daemon.

Unless you make special arrangements, the daemon will run as root and
hence the programs it invokes will also run as root, which is a
security weakness. It is strongly recommended that you use absolute
pathnames when specifying programs to execute, and that you use the
Makefile options TAC_PLUS_USERID and TAC_PLUS_GROUPID so that the
daemon is not running as root when calling these programs,

The daemon communicates with pre and post authorization programs over
a pair of pipes. Programs using the standard i/o library will use full
buffering in these circumstances. This shouldn't be a problem for most
programs, since they'll read AV pairs till they see end of file on
input, and they'll flush all output when they exit.

CONFIGURING AUTHORIZATION ON THE NAS

If authorization is not explicitly configured on the NAS, no
authorization takes place i.e. effectively, everything is
permitted. Noe that this is the converse of what happens on the
daemon, where anything not explicitly permitted is denied by default.

To configure command authorization on the NAS, issue the following NAS
configuration commands:

 aaa authorization commands 1 tacacs+
 aaa authorization commands 15 tacacs+

This will make the NAS send tacacs+ requests for all level 1 (ordinary
user) and level 15 (privileged level) commands on all lines/interfaces.

NOTE: As soon as you configure the above on your NAS, you will only be
permitted to execute NAS commands which are permitted by your tacacs+
daemon. So make sure you have configured, on the daemon, an
authenticated user who is authorized to run commands, or you will be
unable to do much on the NAS after turning on authorization.

Alternatively, or in addition, you may also want to configure the
following:

 aaa authorization commands 1 tacacs+ if-authenticated

This will use tacacs+ authorization for level 1 (user-level commands)
but if problems arise, you can just switch off the tacacs+ server and
authorization will then be granted to anyone who is authenticated.

The following daemon configuration should be sufficient to ensure that
you can always login as username "admin" (with a suitable password)
and run any command as that user:

user = admin {
 password = kppPfHq/j6gXs
 default service = permit
}

ACCOUNTING

There is only one configurable accounting parameter -- the accounting
file name. All accounting records are written, as text, to this
filename compiled into the code. The filename is configured as follows
at the top-level of the configuration file:

accounting file = <filename>

Since accounting requests occur (and are serviced) asynchronously, it
is necessary to lock the accounting file so that two writers don't
simultaneously update it. The code uses the fcntl call to do this
locking. It is recommended that the accounting file reside on a local
filesystem. Although fcntl locking over NFS is supported on some Unix
implementations, it is notoriously unreliable. Even if your
implementation is reliable, locking is likely to be extremely
inefficient over NFS.

DEBUGGING CONFIGURATION FILES

When creating configuration files, it is convenient to check their
syntax using the -P flag to tac_plus e.g.

 tac_plus -P -C <config file name>

will syntax check the configuration file and print any error messages
on the terminal.

DEBUGGING A RUNNING SERVER

There is a myriad of debugging values that can be used in conjunction
with the -d flag to produce debugging output in /var/tmp/tac_plus.log.
See the man page for more information.

CHANGING CONFIGURATIONS

To change a configuration file, you must edit the configuration file
and then send the daemon a SIGUSR1. This will cause it to reinitialize
itself and re-read the configuration file.

NOTE: The perl script generate_passwd.pl may be used to hand-generate
encrypted passwords, or they may be taken from a Unix passwd file.

FREQUENTLY ASKED QUESTIONS

Q). Does TACACS+ use a database instead of a flat (/etc/passwd like)
file to decrease search times, say if we are talking about a large
database of 40,000 users?

A). The TACACS+ authentication database is held internally as a hash
table. This makes lookup times fast and fairly linear, at the expense
of making the server use potentially large amounts of memory space.

NOTE: If you specify that the server uses passwd(5) files for
authentication, then you don't get this speed benefit, but you save
space.

If you're willing to write the code, it should be a relatively simple
matter to interface the code to a database scheme e.g. unix dbm files,
or some proprietary database package, if you wish.

Q). Is there any way to avoid having clear text versions of the ARAP
and CHAP secrets in the configuration file?

Both CHAP and ARAP require that the server knows the cleartext
password (or equivalently, something from which the server can
generate the cleartext password).

If we encrypt the passwords in the database, then we need to keep the
key around so that server can decrypt. So this only ends up being a
slight obfuscation and not much more secure than the original scheme.

In regular TACACS, the CHAP and ARAP secrets were separated from the
password file because the password file may be a system password file
and hence world readable. But with TACACS+'s native database, there
is no such requirement, so we think the best solution is to
read-protect the files. Note that this is the same problem that a
kerberos server has. If your security is compromised on the kerberos
server, then you're database is toast. Kerberos does encrypt the
database, but if you want your server to automatically restart, then
you end up having to kstash the key in a file anyway.

So storing the cleartext password on the security server is really an
absolute requirement of the CHAP and ARAP protocols, not something
imposed by TACACS+. All TACACS+ imposes is that you must then supply
that cleartext password to the NAS. While that may bother you,
remember that the password is encrypted in the TACACS+ packet.

We could have chosen a scheme where the NAS sends the challenge
information to the TACACS+ daemon and the daemon uses the cleartext
password to generate the response and returns that, but that means
that we must include specific protocol knowledge into the protocol for
both ARAP and CHAP and we would have to update the protocol every time
a new authentication protocol is added. Hence we decided to go with
the SENDPASS mechanism.

Q). How is the typical login authentication sequence done?

A). NAS sends START packet to daemon
 Daemon send GETUSER to NAS
 NAS prompts user for username
 NAS sends pkt to daemon
 Daemon sends GETPASS to the NAS
 NAS prompts user for password
 NAS sends pkt to daemon
 Daemon sends accept or reject to NAS

Q). Is there a GUI for the configuration file?
A). No. Use your favourite text editor.

